Select a Course:	Math Grade 8
Teacher:	CORE Math Grade 8
Course:	Math Grade 8
Year:	$2016-17$
Months:	- All -

Grade 8 CCSS8 Operations with Fractions

Enduring Understandings

Essential Questions

Standards

How is division related to realistic situations and to other operations?

Knowledge \& Skills

Academic Language

a
Multiplication and division are inverse operations for fractions

Addition and Subtractions require common denominators

ㄴ. Multiply/Divide fractions

Add/Subtract with like denominators

ใ Add/Subtract with unlike denominators

© Grade 8 CCSS8 Rational and Real Numbers

Enduring Understandings

Every number has a decimal expansionAny real number can be written in multiple ways

Essential Questions

Why is it helpful to write numbers in different ways?

Standards

8.EE.A. 2 - Expressions and Equations Work with radicals and integer exponents ~ Use square root and cube root symbols to represent solutions to equations of the form $x 2=p$ and $x 3=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that? 2 is irrational.
8.NS.A. 1 - Know that there are numbers that are not rational, and approximate them by rational numbers \sim Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number
8.NS.A. 2 - Know that there are numbers that are not rational, and approximate them by rational numbers ~ Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., ?2).

CCSS.Math.Practice.MP3 - Construct viable arguments and critique the

Knowledge \& Skills

Academic Language
(1) Rational

A Number
ใ Repeating Decimal
 Decimal

Estimating

 irrational numbersa) See Livebinder Unit 1 "Lesson 1 of 3"

Classifying and comparing real numbers
a) See Livebinder Unit 1 "Lesson 1 of 3" 1 "Lesson 1 of 3"

Writing fractions as decimals and visaversa
a) See Livebinder Unit 1 "Lesson 1 of 3 "
Roots and cube
a) See Livebinder Unit
\qquad

reasoning of others.
CCSS.Math.Practice.MP4 - Model with mathematics.

CCSS.Math.Practice.MP5 - Use appropriate tools strategically.

CCSS.Math.Practice.MP6 - Attend to precision.

CCSS.Math.Practice.MP7 - Look for and make use of structure.

CCSS.Math.Practice.MP8 - Look for and express regularity in repeated reasoning.

CCSS.Math.Practice.MP1 - Make sense of problems and persevere in solving them.

Grade 8 CCSS8 Solving Equations Part A

Enduring
 Understandings

Linear equations canhave one, infinitely many, or no solution

느 To maintain equivalence you must do the same thing to both sides of the equal

Essential Questions

Standards

8.EE.C. 7 - Analyze and solve linear equations and pairs of simultaneous linear equations \sim Solve linear equations in one variable.

CCSS.Math.Practice.MP1 - Make sense of problems and persevere in solving them.

Knowledge \& Skills

Academic Language

What is equivalence?

3Solving 1- and 2step Equations
a) See Livebinder Unit 2 "Lesson 2"

Simplifying
algebraic expressions

Multiplicative InverseCoefficient! Properties ก Two-Step
sign
CCSS.Math.Practice.MP2 - Reason abstractly and quantitatively.

CCSS.Math.Practice.MP3 - Construct viable arguments and critique the reasoning of others.

CCSS.Math.Practice.MP4 - Model with mathematics.

CCSS.Math.Practice.MP7 - Look for and make use of structure.
a) See Livebinder Unit Equations
2"Lesson 2"

2 "Lesson 2"
Solving multi-step equations
a) See Livebinder Unit

2 "Lesson 2"

Grade 8 CCSS8 Solving Equations - B. Pythagorean Th.

Enduring Understandings

Right triangles have a special relationship among the side lengths, which can be represented by a model and a formula

The pythagorean theorem can be used to find the missing side lengths on the coordinate plane and in real lifeThe pythagorean theorem and its converse can be proven

Essential Questions

How can

algebraic concepts be applied to geometry?

Standards

8.G.B.6 - Understand and apply the Pythagorean Theorem ~ Explain a proof of the Pythagorean Theorem and its converse.
8.G.B. 8 - Understand and apply the Pythagorean Theorem ~ Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.
8.G.B. 7 - Understand and apply the Pythagorean Theorem ~ Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.

CCSS.Math.Practice.MP1 - Make sense of problems and persevere in solving them.

CCSS.Math.Practice.MP3 - Construct viable arguments and critique the reasoning of others.
CCSS.Math.Practice.MP4 - Model with mathematics.

CCSS.Math.Practice.MP5 - Use appropriate tools strategically.

CCSS.Math.Practice.MP7 - Look for and make use of structure.

G6-8:1.25 - Use a variety of technology tools (e.g., dictionary, thesaurus, grammar-checker, calculator) to maximize the accuracy of work.

Knowledge \& Skills

Academic Language
Th Pythagorean Legs

Theorem
a) See Livebinder Unit 6 "Lesson 1 of 3"

ConverseHypotenuse T Pythagorean
a) See Livebinder Unit

6 "Lesson 1 of 3 "
ก Application Questions

Enduring Understandings

©Unit rates can be explained in graphical representation and algebraic equations

Essential Questions

- Why are graphs helpful?

Standards

8.EE.B. 5 - Understand the connections between proportional relationships, lines, and linear equations ~ Graph proportional relationships, interpreting the unit rate as the slope of the graph.

Knowledge \& Skills

Academic Language

The equation $y=m x+b$ is a straight line and the slope and y-intercept are critical to solving real-world problems

Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.
8.F.A. 3 - Define, evaluate, and compare functions ~ Interpret the equation $y=$ $m x+b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear.
8.F.B.4 - Use functions to model relationships between quantities ~ Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.

CCSS.Math.Practice.MP2 - Reason abstractly and quantitatively.

CCSS.Math.Practice.MP3 - Construct viable arguments and critique the reasoning of others.

CCSS.Math.Practice.MP4 - Model with mathematics.

CCSS.Math.Practice.MP5 - Use appropriate tools strategically.

CCSS.Math.Practice.MP7 - Look for and make use of structure.

CCSS.Math.Practice.MP1 - Make sense of problems and persevere in solving them.

Grade 8 CCSS8 Functions

Enduring Understandings

A function is a specific relationship in which each input has a unique output

A function can be represented with an algebraic ruleLinear functions can be used to represent and generalize real-world situations
 Questions

슨How can we model relationships between quantities?

Standards

8.F.A. 1 - Define, evaluate, and compare functions ~ Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. 1
8.F.A. 2 - Define, evaluate, and compare functions ~ Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).
8.F.B. 5 - Use functions to model relationships between quantities ~ Describe qualitatively the functional

Knowledge \& Skills

Academic Language

[Relations in	(${ }_{\text {Relation }}$
functions	
a) See Livebinder Unit 4 "Lesson 2 of 5"	- Domain
	\% Range
Functions	ㄴ. Function
4 "Lesson 2 of 5"	ㄴ. Function Table
- Comparing	
functions a) See Livebinder Unit	Independent Variable
4 "Lesson 3 of 5" and	
"Lesson 4 of 5"	Dependent Variable

relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.
8.EE.C. 8 - Analyze and solve linear equations and pairs of simultaneous linear equations \sim Analyze and solve pairs of simultaneous linear equations.
8.EE.C.7a - Analyze and solve linear equations and pairs of simultaneous linear equations ~ Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x=a, a=a$, or $a=b$ results (where a and b are different numbers).
8.EE.C.7b - Analyze and solve linear equations and pairs of simultaneous linear equations ~ Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.

CCSS.Math.Practice.MP1 - Make sense of problems and persevere in solving them.

CCSS.Math.Practice.MP2 - Reason abstractly and quantitatively.
CCSS.Math.Practice.MP3 - Construct viable arguments and critique the reasoning of others.

CCSS.Math.Practice.MP4 - Model with mathematics.

CCSS.Math.Practice.MP7 - Look for and make use of structure.

는Create functions and graphs to demonstrate real world applications a) See Livebinder Unit 4 "Lesson 3 of 5" (creating function representations)

Linear Function
(t) Continuous Data - Discrete Data - Qualitative Graphs

- Grade 8 CCSS8 Systems of Functions

Enduring Understandings

${ }^{0}$
The solution to a system of two linear equations is an ordered pair that satisfies both equations

Some systems of equations have no solutions (parallel lines) and others have infinitely many solutions (the same line)

Essential Questions

는How do graphs show equivalence?

Standards

8.EE.C.8a - Analyze and solve linear equations and pairs of simultaneous linear equations ~ Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.
8.EE.C.8b - Analyze and solve linear equations and pairs of simultaneous linear equations \sim Solve systems of two linear equations in two variables algebraically, and estimate solutions by

Knowledge \& Skills

Academic Language

Systems of equations/problem solving Graphing and solving systems of equations by substitution	System of Equations Substitution

graphing the equations. Solve simple cases by inspection. For example, $3 x+$ $2 y=5$ and $3 x+2 y=6$ have no solution because $3 x+2 y$ cannot simultaneously be 5 and 6 .
8.EE.C.8c - Analyze and solve linear equations and pairs of simultaneous linear equations ~ Solve real-world and mathematical problems leading to two linear equations in two variables.

CCSS.Math.Practice.MP3 - Construct viable arguments and critique the reasoning of others.

CCSS.Math.Practice.MP4 - Model with mathematics.

CCSS.Math.Practice.MP7 - Look for and make use of structure.

CCSS.Math.Practice.MP1 - Make sense of problems and persevere in solving them.

Grade 8 CCSS8 Geometric Figures

Enduring Understandings

When parallel lines are cut by a transversal, the eight angles created have a special relationship

Reflections, transformations, and rotations are actions that produce congruent geometric objects

Geometry concepts can be used to algebraically find the measure of missing angles

a
A dilation is a transformation that changes the objects size but not its shape

Essential

 QuestionsA) How can algebraic concepts be applied to geometry?
B) How can we best show the change in position of a figure?

Standards

8.G.A. 1 - Understand congruence and similarity using physical models, transparencies, or geometry software ~ Verify experimentally the properties of rotations, reflections, and translations:
8.G.A. 3 - Understand congruence and similarity using physical models, transparencies, or geometry software ~ Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
8.G.A. 5 - Understand congruence and similarity using physical models, transparencies, or geometry software ~ Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.

CCSS.Math.Practice.MP2 - Reason abstractly and quantitatively.

CCSS.Math.Practice.MP3 - Construct viable arguments and critique the reasoning of others.

CCSS.Math.Practice.MP4 - Model with mathematics.

CCSS.Math.Practice.MP8 - Look for and express regularity in repeated reasoning.

CCSS.Math.Practice.MP7 - Look for and make use of structure.

Knowledge \& Skills

Academic Language

Parallel Lines cut by a transversal
Interior and
Exterior Angles of
Polygons
Transformations on the coordinate plane (translations, reflections, dilations) a) See Livebinder Unit 3 "Lesson 1 of 3" (discovering the center of dilation, performing dilations, basic reflections, batman reflection, winking smiley face reflection, clock faces, trace paper rotations, coordinate plane graph paper)
 Angles
 Remote Interior Angles - Corresponding Angles

CCSS.Math.Practice.MP1 - Make sense of problems and persevere in solving them.

Translation

- CongruentReflectionLine of ReflectionDilation

A Grade 8 CCSS8 Congruence and Similarity

Enduring Understandings

Congruent figures have the same size and shape

Two similar figures are related by a scale factor, which is the ratio of the lengths of corresponding sides

Two shapes are similar if the length of all the corresponding sides are proportional and all corresponding angles are congruent

Essential Questions

How can you determine congruence and similarity?

Standards

8.G.A. 2 - Understand congruence and similarity using physical models, transparencies, or geometry software ~ Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.
8.G.A. 4 - Understand congruence and similarity using physical models, transparencies, or geometry software ~ Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar twodimensional figures, describe a sequence that exhibits the similarity between them.
8.EE.B. 6 - Understand the connections between proportional relationships, lines, and linear equations \sim Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y=m x$ for a line through the origin and the equation y $=m x+b$ for a line intercepting the vertical axis at b.
8.G.A.1a - Understand congruence and similarity using physical models, transparencies, or geometry software ~ Lines are taken to lines, and line segments to line segments of the same length.
8.G.A.1b - Understand congruence and similarity using physical models, transparencies, or geometry software ~ Angles are taken to angles of the same measure.
8.G.A.1c - Understand congruence and similarity using physical models, transparencies, or geometry software ~ Parallel lines are taken to parallel lines.

CCSS.Math.Practice.MP7 - Look for and make use of structure.

Knowledge \& Skills
 Academic Language

Prove congruence of two figures	Corresponding Parts
Similarity after transformations	Similar
Similar Triangles and Indirect Measurement	Similar Polygons Scale Factors
Slope and Similar Triangles	Indirect Measurement

CCSS.Math.Practice.MP1 - Make sense of problems and persevere in solving them.

CCSS.Math.Practice.MP2 - Reason abstractly and quantitatively.

CCSS.Math.Practice.MP3 - Construct viable arguments and critique the reasoning of others.

CCSS.Math.Practice.MP4 - Model with mathematics.

图 Grade 8 CCSS8 Volume and Surface Area

Enduring Understandings

Object volumes can be calculated with specific formulasSurface Area of objects are the sum of the area of each side

Essential Questions

ค
Why are formulas important in math and science?

Standards

8.G.C. 9 - Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres ~Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.

CCSS.Math.Practice.MP1 - Make sense of problems and persevere in solving them.

CCSS.Math.Practice.MP2 - Reason abstractly and quantitatively.

CCSS.Math.Practice.MP3 - Construct viable arguments and critique the reasoning of others.

CCSS.Math.Practice.MP4 - Model with mathematics.

CCSS.Math.Practice.MP6 - Attend to precision.

CCSS.Math.Practice.MP7 - Look for and make use of structure.

G6-8:1.25 - Use a variety of technology tools (e.g., dictionary, thesaurus, grammar-checker, calculator) to maximize the accuracy of work.

Knowledge \& Skills

Academic Language

				describe possible association between the two variables. 8.SP.A. 1 - Investigate patterns of association in bivariate data ~ onstruct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. 8.SP.A. 2 - Investigate patterns of association in bivariate data \sim Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line. 8.SP.A. 3 - Investigate patterns of association in bivariate data ~ Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. CCSS.Math.Practice.MP3 - Construct viable arguments and critique the reasoning of others. CCSS.Math.Practice.MP4 - Model with mathematics. CCSS.Math.Practice.MP5 - Use appropriate tools strategically. CCSS.Math.Practice.MP1 - Make sense of problems and persevere in solving them. G6-8:1.16 - Distinguish among different types of charts and graphs, and choose the most appropriate type to represent given data.	8		- Two-Way Table
$\frac{\oplus}{\frac{9}{3}}$	Enduring Understandings	Essential Questions		Standards \%	Knowledge \& Skills		Academic Language
$\frac{2}{3}$	Enduring Understandings	Essential Questions		Standards \%	Knowledge \& Skills		Academic Language

